SECTION 1 (Maximum Marks: 18)

- This section contains SIX (06) questions.
- Each question has FOUR options. ONLY ONE of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If ONLY the correct option is chosen;
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);
Negative Marks : -1 In all other cases.
Q. 1 Suppose a, b denote the distinct real roots of the quadratic polynomial $x^{2}+20 x-2020$ and suppose c, d denote the distinct complex roots of the quadratic polynomial $x^{2}-20 x+2020$. Then the value of

$$
a c(a-c)+a d(a-d)+b c(b-c)+b d(b-d)
$$

is
(A) 0
(B) 8000
(C) 8080
(D) 16000
Q. 2 If the function $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $f(x)=|x|(x-\sin x)$, then which of the following statements is TRUE?
(A) f is one-one, but NOT onto
(B) f is onto, but NOT one-one
(C) f is BOTH one-one and onto
(D) f is NEITHER one-one NOR onto
Q. $3 \quad$ Let the functions $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \longrightarrow \mathbb{R}$ be defined by

$$
f(x)=e^{x-1}-e^{-|x-1|} \quad \text { and } \quad g(x)=\frac{1}{2}\left(e^{x-1}+e^{1-x}\right)
$$

Then the area of the region in the first quadrant bounded by the curves $y=f(x), y=g(x)$ and $x=0$ is
(A) $(2-\sqrt{3})+\frac{1}{2}\left(e-e^{-1}\right)$
(B) $(2+\sqrt{3})+\frac{1}{2}\left(e-e^{-1}\right)$
(C) $(2-\sqrt{3})+\frac{1}{2}\left(e+e^{-1}\right)$
(D) $(2+\sqrt{3})+\frac{1}{2}\left(e+e^{-1}\right)$
Q. 4 Let a, b and λ be positive real numbers. Suppose P is an end point of the latus rectum of the parabola $y^{2}=4 \lambda x$, and suppose the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ passes through the point P. If the tangents to the parabola and the ellipse at the point P are perpendicular to each other, then the eccentricity of the ellipse is
(A) $\frac{1}{\sqrt{2}}$
(B) $\frac{1}{2}$
(C) $\frac{1}{3}$
(D) $\frac{2}{5}$
Q. 5 Let C_{1} and C_{2} be two biased coins such that the probabilities of getting head in a single toss are $\frac{2}{3}$ and $\frac{1}{3}$, respectively. Suppose α is the number of heads that appear when C_{1} is tossed twice, independently, and suppose β is the number of heads that appear when C_{2} is tossed twice, independently. Then the probability that the roots of the quadratic polynomial $x^{2}-\alpha x+\beta$ are real and equal, is
(A) $\frac{40}{81}$
(B) $\frac{20}{81}$
(C) $\frac{1}{2}$
(D) $\frac{1}{4}$
Q. 6 Consider all rectangles lying in the region

$$
\left\{(x, y) \in \mathbb{R} \times \mathbb{R}: 0 \leq x \leq \frac{\pi}{2} \text { and } 0 \leq y \leq 2 \sin (2 x)\right\}
$$

and having one side on the x-axis. The area of the rectangle which has the maximum perimeter among all such rectangles, is
(A) $\frac{3 \pi}{2}$
(B) π
(C) $\frac{\pi}{2 \sqrt{3}}$
(D) $\frac{\pi \sqrt{3}}{2}$

SECTION 2 (Maximum Marks: 24)

- This section contains SIX (06) questions.
- Each question has FOUR options. ONE OR MORE THAN ONE of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks
+4 If only (all) the correct option(s) is(are) chosen;
Partial Marks : +3 If all the four options are correct but ONLY three options are chosen;
Partial Marks : +2 If three or more options are correct but ONLY two options are chosen, both of which are correct;
Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a correct option;
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);
Negative Marks: -2 In all other cases.
Q. 7 Let the function $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=x^{3}-x^{2}+(x-1) \sin x$ and let $g: \mathbb{R} \rightarrow \mathbb{R}$ be an arbitrary function. Let $f g: \mathbb{R} \rightarrow \mathbb{R}$ be the product function defined by $(f g)(x)=f(x) g(x)$. Then which of the following statements is/are TRUE?
(A) If g is continuous at $x=1$, then $f g$ is differentiable at $x=1$
(B) If $f g$ is differentiable at $x=1$, then g is continuous at $x=1$
(C) If g is differentiable at $x=1$, then $f g$ is differentiable at $x=1$
(D) If $f g$ is differentiable at $x=1$, then g is differentiable at $x=1$
Q. $8 \quad$ Let M be a 3×3 invertible matrix with real entries and let I denote the 3×3 identity matrix. If $M^{-1}=\operatorname{adj}(\operatorname{adj} M)$, then which of the following statements is/are ALWAYS TRUE?
(A) $M=I$
(B) $\operatorname{det} M=1$
(C) $M^{2}=I$
(D) $(\operatorname{adj} M)^{2}=I$
Q. 9 Let S be the set of all complex numbers z satisfying $\left|z^{2}+z+1\right|=1$. Then which of the following statements is/are TRUE?
(A) $\left|z+\frac{1}{2}\right| \leq \frac{1}{2}$ for all $z \in S$
(B) $|z| \leq 2$ for all $z \in S$
(C) $\left|z+\frac{1}{2}\right| \geq \frac{1}{2}$ for all $z \in S$
(D) The set S has exactly four elements
Q. 10 Let x, y and z be positive real numbers. Suppose x, y and z are the lengths of the sides of a triangle opposite to its angles X, Y and Z, respectively. If

$$
\tan \frac{X}{2}+\tan \frac{Z}{2}=\frac{2 y}{x+y+z},
$$

then which of the following statements is/are TRUE?
(A) $2 Y=X+Z$
(B) $Y=X+Z$
(C) $\tan \frac{x}{2}=\frac{x}{y+z}$
(D) $x^{2}+z^{2}-y^{2}=x z$
Q. 11 Let L_{1} and L_{2} be the following straight lines.

$$
L_{1}: \frac{x-1}{1}=\frac{y}{-1}=\frac{z-1}{3} \text { and } L_{2}: \frac{x-1}{-3}=\frac{y}{-1}=\frac{z-1}{1} .
$$

Suppose the straight line

$$
L: \frac{x-\alpha}{l}=\frac{y-1}{m}=\frac{z-\gamma}{-2}
$$

lies in the plane containing L_{1} and L_{2}, and passes through the point of intersection of L_{1} and L_{2}. If the line L bisects the acute angle between the lines L_{1} and L_{2}, then which of the following statements is/are TRUE?
(A) $\alpha-\gamma=3$
(B) $l+m=2$
(C) $\alpha-\gamma=1$
(D) $l+m=0$
Q. 12 Which of the following inequalities is/are TRUE?
(A) $\int_{0}^{1} x \cos x d x \geq \frac{3}{8}$
(B) $\int_{0}^{1} x \sin x d x \geq \frac{3}{10}$
(C) $\int_{0}^{1} x^{2} \cos x d x \geq \frac{1}{2}$
(D) $\int_{0}^{1} x^{2} \sin x d x \geq \frac{2}{9}$

SECTION 3 (Maximum Marks: 24)

- This section contains SIX (06) questions. The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer. If the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal places.
- Answer to each question will be evaluated according to the following marking scheme: Full Marks $\quad:+4$ If ONLY the correct numerical value is entered; Zero Marks : $0 \quad$ In all other cases.
Q. 13 Let m be the minimum possible value of $\log _{3}\left(3^{y_{1}}+3^{y_{2}}+3^{y_{3}}\right)$, where y_{1}, y_{2}, y_{3} are real numbers for which $y_{1}+y_{2}+y_{3}=9$. Let M be the maximum possible value of $\left(\log _{3} x_{1}+\log _{3} x_{2}+\log _{3} x_{3}\right)$, where x_{1}, x_{2}, x_{3} are positive real numbers for which $x_{1}+x_{2}+x_{3}=9$. Then the value of $\log _{2}\left(m^{3}\right)+\log _{3}\left(M^{2}\right)$ is \qquad
Q. 14 Let $a_{1}, a_{2}, a_{3}, \ldots$ be a sequence of positive integers in arithmetic progression with common difference 2. Also, let $b_{1}, b_{2}, b_{3}, \ldots$ be a sequence of positive integers in geometric progression with common ratio 2. If $a_{1}=b_{1}=c$, then the number of all possible values of c, for which the equality

$$
2\left(a_{1}+a_{2}+\cdots+a_{n}\right)=b_{1}+b_{2}+\cdots+b_{n}
$$

holds for some positive integer n, is \qquad
Q. 15 Let $f:[0,2] \rightarrow \mathbb{R}$ be the function defined by

$$
f(x)=(3-\sin (2 \pi x)) \sin \left(\pi x-\frac{\pi}{4}\right)-\sin \left(3 \pi x+\frac{\pi}{4}\right)
$$

If $\alpha, \beta \in[0,2]$ are such that $\{x \in[0,2]: f(x) \geq 0\}=[\alpha, \beta]$, then the value of $\beta-\alpha$ is \qquad
Q. 16 In a triangle $P Q R$, let $\vec{a}=\overrightarrow{Q R}, \vec{b}=\overrightarrow{R P}$ and $\vec{c}=\overrightarrow{P Q}$. If

$$
|\vec{a}|=3, \quad|\vec{b}|=4 \quad \text { and } \quad \frac{\vec{a} \cdot(\vec{c}-\vec{b})}{\vec{c} \cdot(\vec{a}-\vec{b})}=\frac{|\vec{a}|}{|\vec{a}|+|\vec{b}|}
$$

then the value of $|\vec{a} \times \vec{b}|^{2}$ is \qquad
Q. 17 For a polynomial $g(x)$ with real coefficients, let m_{g} denote the number of distinct real roots of $g(x)$. Suppose S is the set of polynomials with real coefficients defined by

$$
S=\left\{\left(x^{2}-1\right)^{2}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}\right): a_{0}, a_{1}, a_{2}, a_{3} \in \mathbb{R}\right\} .
$$

For a polynomial f, let f^{\prime} and $f^{\prime \prime}$ denote its first and second order derivatives, respectively. Then the minimum possible value of $\left(m_{f^{\prime}}+m_{f^{\prime \prime}}\right)$, where $f \in S$, is \qquad
Q. 18 Let e denote the base of the natural logarithm. The value of the real number a for which the right hand limit

$$
\lim _{x \rightarrow 0^{+}} \frac{(1-x)^{\frac{1}{x}}-e^{-1}}{x^{a}}
$$

is equal to a nonzero real number, is \qquad

